Numerical Results for a Globalized Active-set Newton Method for Mixed Complementarity

نویسندگان

  • A. N. Daryina
  • A. F. Izmailov
  • M. V. Solodov
چکیده

We discuss a globalization scheme for a class of active-set Newton methods for solving the mixed complementarity problem (MCP), which was proposed by the authors in [3]. The attractive features of the local phase of the method are that it requires solving only one system of linear equations per iteration, yet the local superlinear convergence is guaranteed under extremely mild assumptions, in particular weaker than the property of semistability of an MCP solution. Thus the local superlinear convergence conditions of the method are weaker than conditions required for the semismooth (generalized) Newton methods and also weaker than convergence conditions of the linearization (Josephy–Newton) method. Numerical experiments on some test problems are presented, including results on the MCPLIB collection for the globalized version.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Class of Active-Set Newton Methods for Mixed ComplementarityProblems

Based on the identification of indices active at a solution of the mixed complementarity problem (MCP), we propose a class of Newton methods for which local superlinear convergence holds under extremely mild assumptions. In particular, the error bound condition needed for the identification procedure and the nondegeneracy condition needed for the convergence of the resulting Newton method are i...

متن کامل

A feasible semismooth asymptotically Newton method for mixed complementarity problems

Semismooth Newton methods constitute a major research area for solving mixed complementarity problems (MCPs). Early research on semismooth Newton methods is mainly on infeasible methods. However, some MCPs are not well defined outside the feasible region or the equivalent unconstrained reformulations of other MCPs contain local minimizers outside the feasible region. As both these problems coul...

متن کامل

A Semismooth Active-set Algorithm for Degenerate Nonlinear Complementarity Problems

We propose a semismooth active-set Newton algorithm for solving the nonlinear complementarity problems with degenerate solutions. This method introduces the active-set technique to identify the degenerate set. At each iteration, the search direction is obtained by two reduced linear systems. Instead of employing gradient steps as adjustments to guarantee the sufficient reduction of the merit fu...

متن کامل

An infeasible interior-point method for the $P*$-matrix linear complementarity problem based on a trigonometric kernel function with full-Newton step

An infeasible interior-point algorithm for solving the$P_*$-matrix linear complementarity problem based on a kernelfunction with trigonometric barrier term is analyzed. Each (main)iteration of the algorithm consists of a feasibility step andseveral centrality steps, whose feasibility step is induced by atrigonometric kernel function. The complexity result coincides withthe best result for infea...

متن کامل

Globalizing a nonsmooth Newton method via nonmonotone path search

We give a framework for the globalization of a nonsmooth Newton method. In part one we start with recalling B. Kummer's approach to convergence analysis of a nonsmooth Newton method and state his results for local convergence. In part two we give a globalized version of this method. Our approach uses a path search idea to control the descent. After elaborating the single steps, we analyze and p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004